Handling Missing Data with Imputations in R
Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.
Suivez de courtes vidéos animées par des instructeurs experts, puis mettez en pratique ce que vous avez appris avec des exercices interactifs dans votre navigateur.
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.
Learn to use the Bioconductor package limma for differential gene expression analysis.
Learn how to tune your models hyperparameters to get the best predictive results.
Develop a better intuition for advanced probability, risk assessment, and simulation techniques to make data-driven business decisions with confidence.
In this course, youll prepare for the most frequently covered statistical topics from distributions to hypothesis testing, regression models, and much more.
Learn how to leverage Bayesian estimation methods to make better inferences about linear regression models.
Learn to analyze and model customer choice data in R.
In this course, youll learn how to implement more advanced Bayesian models using RJAGS.
Learn how to design, automate, and monitor scalable forecasting pipelines in Python.
Learn how to write scalable code for working with big data in R using the bigmemory and iotools packages.