Direkt zum Inhalt
StartseitePython

Kurs

Spoken Language Processing in Python

Fortgeschritten
Aktualisierte 05.2025
Learn how to load, transform, and transcribe speech from raw audio files in Python.
Kurs kostenlos starten

Im Lieferumfang enthaltenPremium or Teams

PythonData Manipulation4 Stunden14 Videos53 Übungen4,400 XP7,786Leistungsnachweis

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen

Kursbeschreibung

Learn Speech Recognition and Spoken Language Processing in Python

We learn to speak far before we learn to read. Even in the digital age, our main method of communication is speech. Spoken Language Processing in Python will help you load, transform, and transcribe audio files. You’ll start by seeing what raw audio looks like in Python, and move on to exploring popular libraries and working through an example business use case.

Use Python SpeechRecognition and PyDub to Transcribe Audio Files

Python has a number of popular libraries that help you to process spoken language. SpeechRecognition offers you an easy way to integrate with speech-to-text APIs, while PyDub helps you to programmatically alter audio file attributes to get them ready for transcription. Each of these libraries is covered in an in-depth chapter, offering you the opportunity to put theory into practice to cement your knowledge.

Practice Speech Transcription with an In-Course Project

The final chapter in this course offers you the opportunity to put everything you’ve learned together by building a speech processing proof of concept for a fictional technology company. You’ll build a system that transcribes phone call audio to text and then performs sentiment analysis to review customer support phone calls.

By the end of this course, you’ll have both the knowledge and hands-on experience to put your learning into practice within your job or personal projects.

Voraussetzungen

Introduction to Natural Language Processing in PythonSupervised Learning with scikit-learn
1

Introduction to Spoken Language Processing with Python

Kapitel starten
2

Using the Python SpeechRecognition library

Kapitel starten
3

Manipulating Audio Files with PyDub

Kapitel starten
4

Processing text transcribed from spoken language

Kapitel starten
Spoken Language Processing in Python
Kurs
abgeschlossen

Leistungsnachweis verdienen

Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzu
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung

Im Lieferumfang enthaltenPremium or Teams

Jetzt anmelden

Mach mit 16 Millionen Lernende und starte Spoken Language Processing in Python heute!

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.