Direkt zum Inhalt
StartseiteMachine Learning

Kurs

MLOps Deployment and Life Cycling

Fortgeschritten
Aktualisierte 05.2025
In this course, you’ll explore the modern MLOps framework, exploring the lifecycle and deployment of machine learning models.
Kurs kostenlos starten

Im Lieferumfang enthaltenPremium or Teams

TheoryMachine Learning4 Stunden16 Videos54 Übungen3,650 XP7,076Leistungsnachweis

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen

Kursbeschreibung

MLOps Deployment and LifeCycling

Explore the modern MLOps framework, including the lifecycle and deployment of machine learning models. In this course, you’ll learn to write ML code that minimizes technical debt, discover the tools you’ll need to deploy and monitor your models, and examine the different types of environments and analytics you’ll encounter.

Learn About the MLOps Lifecycle

After you’ve collected, prepared, and labeled your data, run numerous experiments on different models, and proven your concept with a champion model, it’s time for the next steps. Build. Deploy. Monitor. Maintain. That is the life cycle of your model once it's destined for production. That is the Ops part of MLOps. This course will show you how to navigate the second chapter of your model's journey to value delivery, setting the benchmark for many more to come. You’ll start by exploring the MLOps lifecycle, discovering the importance of MLOps and the key functional components for model development, deployment, monitoring, and maintenance.

Develop ML Code for Deployment

Next, you’ll learn how to develop models for deployment and how to write effective ML code, leverage tools, and train ML pipelines. As you progress, you’ll cover how to deploy your models, exploring different deployment environments and when to use them. You’ll also develop strategies for replacing existing production models and examine APIs.

Learn How to Monitor Your Models

As you complete the course, you’ll discover the crucial performance metrics behind monitoring and maintaining your ML models. You’ll learn about drift monitoring in production, as well as model feedback, updates, and governance. By the time you’re finished, you’ll understand how you can use MLOps lifecycle to deploy your own models in production.

Voraussetzungen

MLOps Concepts
1

MLOps in a Nutshell

Kapitel starten
2

Develop for Deployment

Kapitel starten
3

Deploy and Run

Kapitel starten
4

Monitor and Maintain

Kapitel starten
MLOps Deployment and Life Cycling
Kurs
abgeschlossen

Leistungsnachweis verdienen

Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzu
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung

Im Lieferumfang enthaltenPremium or Teams

Jetzt anmelden

Mach mit 16 Millionen Lernende und starte MLOps Deployment and Life Cycling heute!

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.