Direkt zum Inhalt
StartseiteArtificial Intelligence

Kurs

Intermediate Deep Learning with PyTorch

Fortgeschrittener Anfänger
Aktualisierte 05.2025
Learn about fundamental deep learning architectures such as CNNs, RNNs, LSTMs, and GRUs for modeling image and sequential data.
Kurs kostenlos starten

Im Lieferumfang enthaltenPremium or Teams

PyTorchArtificial Intelligence4 Stunden15 Videos51 Übungen4,050 XP15,072Leistungsnachweis

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen

Kursbeschreibung

Learn Deep Learning

Deep learning is a rapidly evolving field of artificial intelligence that revolutionized the field of machine learning, enabling breakthroughs in areas such as computer vision, natural language processing, and speech recognition. The most recent advances in Generative AI, including image generators and conversational chatbots, have brought deep machine learning models to the public spotlight. Start learning about how deep learning works and how to train deep models yourself today.

Use PyTorch, the Most Pythonic Way to Do Deep Learning

PyTorch is a powerful and flexible deep learning framework that allows researchers and practitioners to build and train neural networks with ease. Loved by Pythonistas around the world, PyTorch offers a lot of flexibility and an intuitive way to implement deep learning concepts.

Train Robust Deep Learning Models

This course in deep learning with PyTorch is designed to provide you with a comprehensive understanding of the fundamental concepts and techniques of deep learning, and equip you with the practical skills to implement various neural network concepts. You’ll get to grips with multi-input and multi-output architectures. You’ll learn how to prevent the vanishing and exploding gradients problems using non-saturating activations, batch normalization, and proper weights initialization. You will be able to alleviate overfitting using regularization and dropout. Finally, you will know how to accelerate the training process with learning rate scheduling.

Build Image and Sequence Models

You get to know two specialized neural network architectures: Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data such as time series or text. You will understand their advantages and will be able to implement them in image classification and time series prediction tasks.

By the end of the course, you will have the knowledge and confidence to robustly train and evaluate your own deep learning models for a range of applications.

Voraussetzungen

Introduction to Deep Learning with PyTorch
1

Training Robust Neural Networks

Kapitel starten
2

Images & Convolutional Neural Networks

Kapitel starten
3

Sequences & Recurrent Neural Networks

Kapitel starten
4

Multi-Input & Multi-Output Architectures

Kapitel starten
Intermediate Deep Learning with PyTorch
Kurs
abgeschlossen

Leistungsnachweis verdienen

Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzu
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung

Im Lieferumfang enthaltenPremium or Teams

Jetzt anmelden

Mach mit 16 Millionen Lernende und starte Intermediate Deep Learning with PyTorch heute!

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.