Direkt zum Inhalt
StartseiteR

Kurs

Feature Engineering in R

Fortgeschrittener Anfänger
Aktualisierte 05.2025
Learn the principles of feature engineering for machine learning models and how to implement them using the R tidymodels framework.
Kurs kostenlos starten

Im Lieferumfang enthaltenPremium or Teams

RMachine Learning4 Stunden14 Videos58 Übungen4,950 XP2,002Leistungsnachweis

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen

Kursbeschreibung

Discover Feature Engineering for Machine Learning

In this course, you’ll learn about feature engineering, which is at the heart of many times of machine learning models. As the performance of any model is a direct consequence of the features it’s fed, feature engineering places domain knowledge at the center of the process. You’ll become acquainted with principles of sound feature engineering, helping to reduce the number of variables where possible, making learning algorithms run faster, improving interpretability, and preventing overfitting.

Implement Feature Engineering Techniques in R

You will learn how to implement feature engineering techniques using the R tidymodels framework, emphasizing the recipe package that will allow you to create, extract, transform, and select the best features for your model.

Engineer Features and Build Better ML Models

When faced with a new dataset, you will be able to identify and select relevant features and disregard non-informative ones to make your model run faster without sacrificing accuracy. You will also become comfortable applying transformations and creating new features to make your models more efficient, interpretable, and accurate!

Voraussetzungen

Supervised Learning in R: ClassificationSupervised Learning in R: Regression
1

Introducing Feature Engineering

Kapitel starten
2

Transforming Features

Kapitel starten
3

Extracting Features

Kapitel starten
4

Selecting Features

Kapitel starten
Feature Engineering in R
Kurs
abgeschlossen

Leistungsnachweis verdienen

Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzu
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung

Im Lieferumfang enthaltenPremium or Teams

Jetzt anmelden

Mach mit 16 Millionen Lernende und starte Feature Engineering in R heute!

Kostenloses Konto erstellen

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.