Pular para o conteúdo principal
InícioPython

Curso

Foundations of Inference in Python

Avançado
Actualizado 05/2025
Get hands-on experience making sound conclusions based on data in this four-hour course on statistical inference in Python.
Iniciar curso gratuitamente

Incluído comPremium or Teams

PythonProbability & Statistics4 horas14 vídeos48 Exercícios4,050 XP2,434Certificado de conclusão

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Truly Understand Hypothesis Tests

What happens after you compute your averages and make your graphs? How do you go from descriptive statistics to confident decision-making? How can you apply hypothesis tests to solve real-world problems? In this four-hour course on the foundations of inference in Python, you’ll get hands-on experience in making sound conclusions based on data. You’ll learn all about sampling and discover how improper sampling can throw statistical inference off course.

Analyze a Broad Range of Scenarios

You'll start by working with hypothesis tests for normality and correlation, as well as both parametric and non-parametric tests. You'll run these tests using SciPy, and interpret their output to use for decision making. Next, you'll measure the strength of an outcome using effect size and statistical power, all while avoiding spurious correlations by applying corrections.Finally, you'll use simulation, randomization, and meta-analysis to work with a broad range of data, including re-analyzing results from other researchers.

Draw Solid Conclusions From Big Data

Following the course, you will be able to successfully take big data and use it to make principled decisions that leaders can rely on. You'll go well beyond graphs and summary statistics to produce reliable, repeatable, and explainable results.

Pré-requisitos

Hypothesis Testing in Python
1

Inferential Statistics and Sampling

Iniciar capítulo
2

Hypothesis Testing Toolkit

Iniciar capítulo
3

Effect Size

Iniciar capítulo
4

Simulation, Randomization, and Meta-Analysis

Iniciar capítulo
Foundations of Inference in Python
Curso
Completo

Obtenha um certificado de conclusão

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 16 milhões de alunos e comece Foundations of Inference in Python hoje!

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.