Pular para o conteúdo principal
InícioR

Curso

Dimensionality Reduction in R

Intermediário
Actualizado 05/2025
Learn dimensionality reduction techniques in R and master feature selection and extraction for your own data and models.
Iniciar curso gratuitamente

Incluído comPremium or Teams

RMachine Learning4 horas16 vídeos56 Exercícios4,600 XP2,100Certificado de conclusão

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Do you ever work with datasets with an overwhelming number of features? Do you need all those features? Which ones are the most important? In this course, you will learn dimensionality reduction techniques that will help you simplify your data and the models that you build with your data while maintaining the information in the original data and good predictive performance.

Why learn dimensionality reduction?



We live in the information age—an era of information overload. The art of extracting essential information from data is a marketable skill. Models train faster on reduced data. In production, smaller models mean faster response time. Perhaps most important, smaller data and models are often easier to understand. Dimensionality reduction is your Occam’s razor in data science.

What will you learn in this course?



The difference between feature selection and feature extraction! Using R, you will learn how to identify and remove features with low or redundant information, keeping the features with the most information. That’s feature selection. You will also learn how to extract combinations of features as condensed components that contain maximal information. That’s feature extraction!

But most importantly, using R’s new tidymodel package, you will use real-world data to build models with fewer features without sacrificing significant performance.

Pré-requisitos

Modeling with tidymodels in R
1

Foundations of Dimensionality Reduction

Iniciar capítulo
2

Feature Selection for Feature Importance

Iniciar capítulo
3

Feature Selection for Model Performance

Iniciar capítulo
4

Feature Extraction and Model Performance

Iniciar capítulo
Dimensionality Reduction in R
Curso
Completo

Obtenha um certificado de conclusão

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 16 milhões de alunos e comece Dimensionality Reduction in R hoje!

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.